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What is an origami wrapping pattern?

• Wraps sheet-like materials around a central body
• Generally, exhibits N-fold rotational symmetry

2
from S. D. Guest and S. Pellegrino, “Inextensional wrapping of flat membranes,” 
in First International Seminar on Structural Morphology, September 1992, pp. 203–215.



Origami wrapping patterns

• 1960: Huso
• 1961: Lanford
• 1974: Scheel
• 1992: Guest & Pellegrino
• 1997: Shafer & Palmer
• 2002: Nojima
• 2013: Zirbel, Lang, et al.
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W.E. Lanford, "Folding apparatus", U.S. Patent 3010372, 1961.
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4H.W. Scheel, “Space-saving storage of flexible sheets", U.S. Patent 3848821, 1974
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• 1960: Huso
• 1961: Lanford
• 1974: Scheel
• 1992: Guest & Pellegrino
• 1997: Shafer & Palmer
• 2002: Nojima
• 2013: Zirbel, Lang, et al.

From, S. A. Zirbel et al., “Accommodating Thickness in Origami-Based Deployable Arrays,” 
Journal of Mechanical Design, vol. 135, no. 11, p. 111005, Oct. 2013, 

based on material published in R.J. Lang, Origami in Action, St. Martin’s Griffin, New York, p. 149,1997.



Origami wrapping patterns

7T. Nojima, “Origami Modeling of Functional Structures Based on Organic
Patterns,” Master’s thesis, Graduate School of Kyoto University, Kyoto, Japan, 2002.

• 1960: Huso
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• 1974: Scheel
• 1992: Guest & Pellegrino
• 1997: Shafer & Palmer
• 2002: Nojima
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Motivation
• Deployable solar arrays for spacecraft

• Enable high-power solar arrays to be folded compactly for launch

9https://www.nasa.gov/mission_pages/juno/news/juno20110527.html
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Motivation
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12“Origami in Space: BYU-designed solar arrays inspired by origami”, https://www.youtube.com/watch?v=3E12uju1vgQ



Motivation
• Deployable solar arrays for spacecraft

• Enable high-power solar arrays to be folded compactly for launch
• Thin, planar unfolded forms require a separate structure to 

provide out-of-plane stiffness
• e.g. deployable trusses, booms, masts

• Mass, complexity, volume savings if this separate structure 
was not needed

13



Motivation
• Deployable solar arrays for spacecraft

• Enable high-power solar arrays to be folded compactly for launch
• Thin, planar unfolded forms require a separate structure to 

provide out-of-plane stiffness
• e.g. deployable trusses, booms, masts

• Mass, complexity, volume savings if this separate structure 
was not needed

14N. A. Pehrson, S. P. Smith, D. C. Ames, S. P. Magleby, and M. Arya, 
“Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft,” in AIAA Scitech 2019 Forum, San Diego, California, 2019.



Motivation
• Deployable solar arrays for spacecraft

• Enable high-power solar arrays to be folded compactly for launch
• Thin, planar unfolded forms require a separate structure to 

provide out-of-plane stiffness
• e.g. deployable trusses, booms, masts

• Mass, complexity, volume savings if this separate structure 
was not needed

• Partially-unfolded wrapping patterns exhibit increased bending 
stiffness due to out-of-plane corrugations

• Previously achieved by tension ties to prevent full unfolding
• Can an origami pattern be designed that has a non-planar 

corrugated form by design?
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Concept overview
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Unfolded form, isometric view

Unfolded form, side view
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Unfolded form, isometric view
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Free parameters
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𝑁 Number of sides in the central prism
𝑛 Number of panels in a gore
𝐴 Radius of central cylinder
𝑑 Radial spacing between successive folded layers
𝑧! Height of the first mountain node

𝑚𝑧"#$%&", ( Target heights of the unfolded mountain nodes, 𝑖 = 1, 2, …𝑛
𝑣𝑧"#$%&", ( Target heights of the unfolded valley nodes, 𝑖 = 1, 2, …𝑛

𝐴

𝑑



Folded form assumptions
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𝑣( = 𝑹(
𝐴 + 𝑑(2𝑖)

0
0

𝑚( = 𝑹(
𝐴 + 𝑑(2𝑖 − 1)

0
𝑚( ⋅ 𝐳

𝐴

𝑑



Algorithm design
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Folded Unfolded

• Generate the fold pattern from the inside out



Algorithm design
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Folded Unfolded

minimize 𝑚()*
+ ⋅ 𝐳 − 𝑚𝑧"#$%&", ()* + 𝑣()*+ ⋅ 𝐳 − 𝑣𝑧"#$%&", ()*

over the variable (𝑚()* ⋅ 𝐳)

such that ∆(= ∆(+ for 𝑖 = 1, 2, 3, 4

∆ = ∆ ′
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• Assuming known 𝑚! , 𝑣!, find 𝑚!"#, 𝑣!"#$ , 𝑚!"#
$
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Folded Unfolded
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• Assuming known 𝑚! , 𝑣!, find 𝑚!"#, 𝑣!"#$ , 𝑚!"#
$

[𝑚!"#
$ , 𝑣!"#$ ] = function generateFoldedPoints(𝑚!"#

$ ⋅ 𝐳)
[c] = function costFunction(𝑚!"#

$ , 𝑣!"#$ , 𝑚𝑧%&'()%, !"#, 𝑣𝑧%&'()%, !"#)
[(𝑚!"#

$ ⋅ 𝐳)∗] = minimize(costFunction(generatedFoldedPoints(𝑚!"#
$ ⋅ 𝐳))



Non-planar origami wrapping zoo
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Deployed stiffness
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• Innermost valley and mountain nodes are fixed
• Equal vertical loads applied to outermost valley and mountain 

nodes

K. Liu and G. H. Paulino, “Nonlinear mechanics of non-rigid origami: an efficient computational approach,” Proceedings of the Royal 
Society A: Mathematical, Physical and Engineering Sciences, vol. 473, 2017.
K. Liu and G. H. Paulino, “MERLIN: A MATLAB implementation to capture highly nonlinear behavior of non-rigid origami,” in 
Proceedings of the IASS Annual Symposium, Tokyo, Japan, 2016.
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Solar array performance
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• Using an example array (N = 7, unfolded diameter = 1.584m)
• Collected power (at normal solar incidence) = 835 W
• Power for an equivalent flat plate = 875 W
• Corrugated surface collects 95% of the power from an equivalent flat plate

• Loss mechanisms for panels due to local angle-of-incidence effects
• Geometric loss (cos(theta))
• Reflective loss

• Can achieve specific power ~200 W/kg
• Current state-of-the-art solar arrays have ~150 W/kg



Fabrication of physical models
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• Each gore is a chain of triangles
• Can fabricate each gore out of planar materials



Extensions
• Can achieve different folded forms
• Can apply different objective functions to obtain different unfolded forms

• e.g. cones, parabolas, and any other surface of revolution
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Conclusions

• Developed a novel origami wrapping pattern
• Non-planar deployed forms for out-of-plane stiffness
• Global thickness accommodation through designed spiral folded forms

• Flexible and powerful algorithm to generate target folded forms, or 
target unfolded forms

• Can be simply fabricated using planar materials
• Applicable to novel lightweight deployable solar array (200 W/kg, or 

30% improvement over state-of-the-art)
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